Medial nucleus tractus solitarius oxytocin receptor signaling and food intake control: the role of gastrointestinal satiation signal processing.
نویسندگان
چکیده
Central oxytocin (OT) administration reduces food intake and its effects are mediated, in part, by hindbrain oxytocin receptor (OT-R) signaling. The neural substrate and mechanisms mediating the intake inhibitory effects of hindbrain OT-R signaling are undefined. We examined the hypothesis that hindbrain OT-R-mediated feeding inhibition results from an interaction between medial nucleus tractus solitarius (mNTS) OT-R signaling and the processing of gastrointestinal (GI) satiation signals by neurons of the mNTS. Here, we demonstrated that mNTS or fourth ventricle (4V) microinjections of OT in rats reduced chow intake in a dose-dependent manner. To examine whether the intake suppressive effects of mNTS OT-R signaling is mediated by GI signal processing, rats were injected with OT to the 4V (1 μg) or mNTS (0.3 μg), followed by self-ingestion of a nutrient preload, where either treatment was designed to be without effect on chow intake. Results showed that the combination of mNTS OT-R signaling and GI signaling processing by preload ingestion reduced chow intake significantly and to a greater extent than either stimulus alone. Using enzyme immunoassay, endogenous OT content in mNTS-enriched dorsal vagal complex (DVC) in response to ingestion of nutrient preload was measured. Results revealed that preload ingestion significantly elevated endogenous DVC OT content. Taken together, these findings provide evidence that mNTS neurons are a site of action for hindbrain OT-R signaling in food intake control and that the intake inhibitory effects of hindbrain mNTS OT-R signaling are mediated by interactions with GI satiation signal processing by mNTS neurons.
منابع مشابه
Hindbrain nucleus tractus solitarius glucagon-like peptide-1 receptor signaling reduces appetitive and motivational aspects of feeding.
Central glucagon-like peptide-1 receptor (GLP-1R) signaling reduces food intake by affecting a variety of neural processes, including those mediating satiation, motivation, and reward. While the literature suggests that separable neurons and circuits control these processes, this notion has not been adequately investigated. The intake inhibitory effects of GLP-1R signaling in the hindbrain medi...
متن کاملEndogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation.
Medial nucleus tractus solitarius (mNTS) neurons express leptin receptors (LepRs), and intra-mNTS delivery of leptin reduces food intake and body weight. Here, the contribution of endogenous LepR signaling in mNTS neurons to energy balance control was examined. Knockdown of LepR in mNTS and area postrema (AP) neurons of rats (LepRKD) via adeno-associated virus short hairpin RNA-interference (AA...
متن کاملEndogenous leptin receptor signaling in the medial nucleus tractus solitarius affects meal size and potentiates intestinal satiation signals.
Leptin receptor (LepRb) signaling in the hindbrain is required for energy balance control. Yet the specific hindbrain neurons and the behavioral processes mediating energy balance control by hindbrain leptin signaling are unknown. Studies here employ genetic [adeno-associated virally mediated RNA interference (AAV-RNAi)] and pharmacological methodologies to specify the neurons and the mechanism...
متن کاملTrkB receptor signaling in the nucleus tractus solitarius mediates the food intake-suppressive effects of hindbrain BDNF and leptin.
Brain-derived neurotrophic factor (BDNF) and TrkB receptor signaling contribute to the central nervous system (CNS) control of energy balance. The role of hindbrain BDNF/TrkB receptor signaling in energy balance regulation is examined here. Hindbrain ventricular BDNF suppressed body weight through reductions in overall food intake and meal size and by increasing core temperature. To localize th...
متن کاملExtracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin-induced suppression of food intake in rats.
Increased food intake is a major factor in the development of obesity, and the control of meal size is a valid approach to reduce food intake in humans. Meal termination, or satiety, is thought to be organized within the caudal brainstem where direct signals from the food handling alimentary canal and long-term signals from the forebrain converge in the solitary nucleus. Cholecystokinin (CCK) r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 308 9 شماره
صفحات -
تاریخ انتشار 2015